adjust rankings for housenumber-only searches

A normal address search with housenumber will use name rankings for
the street name. This is slightly different than weighing for
address parts. Use the same ranking for the first part of the
address for housenumber-only searches to make sure that penalties
remain comparable.
This commit is contained in:
Sarah Hoffmann
2024-01-28 17:54:22 +01:00
parent f9ba7a465a
commit 103800a732

View File

@@ -248,7 +248,8 @@ class SearchBuilder:
yield penalty, exp_count, lookup
def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
def get_name_ranking(self, trange: TokenRange,
db_field: str = 'name_vector') -> dbf.FieldRanking:
""" Create a ranking expression for a name term in the given range.
"""
name_fulls = self.query.get_tokens(trange, TokenType.WORD)
@@ -257,7 +258,7 @@ class SearchBuilder:
# Fallback, sum of penalty for partials
name_partials = self.query.get_partials_list(trange)
default = sum(t.penalty for t in name_partials) + 0.2
return dbf.FieldRanking('name_vector', default, ranks)
return dbf.FieldRanking(db_field, default, ranks)
def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
@@ -315,11 +316,9 @@ class SearchBuilder:
sdata = dbf.SearchData()
sdata.penalty = assignment.penalty
if assignment.country:
tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
if self.details.countries:
tokens = [t for t in tokens if t.lookup_word in self.details.countries]
if not tokens:
return None
tokens = self.get_country_tokens(assignment.country)
if not tokens:
return None
sdata.set_strings('countries', tokens)
elif self.details.countries:
sdata.countries = dbf.WeightedStrings(self.details.countries,
@@ -333,24 +332,54 @@ class SearchBuilder:
self.query.get_tokens(assignment.postcode,
TokenType.POSTCODE))
if assignment.qualifier:
tokens = self.query.get_tokens(assignment.qualifier, TokenType.QUALIFIER)
if self.details.categories:
tokens = [t for t in tokens if t.get_category() in self.details.categories]
if not tokens:
return None
tokens = self.get_qualifier_tokens(assignment.qualifier)
if not tokens:
return None
sdata.set_qualifiers(tokens)
elif self.details.categories:
sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
[0.0] * len(self.details.categories))
if assignment.address:
sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
if not assignment.name and assignment.housenumber:
# housenumber search: the first item needs to be handled like
# a name in ranking or penalties are not comparable with
# normal searches.
sdata.set_ranking([self.get_name_ranking(assignment.address[0],
db_field='nameaddress_vector')]
+ [self.get_addr_ranking(r) for r in assignment.address[1:]])
else:
sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
else:
sdata.rankings = []
return sdata
def get_country_tokens(self, trange: TokenRange) -> List[Token]:
""" Return the list of country tokens for the given range,
optionally filtered by the country list from the details
parameters.
"""
tokens = self.query.get_tokens(trange, TokenType.COUNTRY)
if self.details.countries:
tokens = [t for t in tokens if t.lookup_word in self.details.countries]
return tokens
def get_qualifier_tokens(self, trange: TokenRange) -> List[Token]:
""" Return the list of qualifier tokens for the given range,
optionally filtered by the qualifier list from the details
parameters.
"""
tokens = self.query.get_tokens(trange, TokenType.QUALIFIER)
if self.details.categories:
tokens = [t for t in tokens if t.get_category() in self.details.categories]
return tokens
def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
""" Collect tokens for near items search or use the categories
requested per parameter.