Files
Nominatim/nominatim/tokenizer/token_analysis/generic.py
Sarah Hoffmann 7cfcbacfc7 make token analyzers configurable modules
Adds a mandatory section 'analyzer' to the token-analysis entries
which define, which analyser to use. Currently there is exactly
one, generic, which implements the former ICUNameProcessor.
2021-10-04 17:37:34 +02:00

111 lines
4.0 KiB
Python

"""
Generic processor for names that creates abbreviation variants.
"""
from collections import defaultdict
import itertools
from icu import Transliterator
import datrie
### Analysis section
def create(norm_rules, trans_rules, config):
""" Create a new token analysis instance for this module.
"""
return GenericTokenAnalysis(norm_rules, trans_rules, config['variants'])
class GenericTokenAnalysis:
""" Collects the different transformation rules for normalisation of names
and provides the functions to apply the transformations.
"""
def __init__(self, norm_rules, trans_rules, replacements):
self.normalizer = Transliterator.createFromRules("icu_normalization",
norm_rules)
self.to_ascii = Transliterator.createFromRules("icu_to_ascii",
trans_rules +
";[:Space:]+ > ' '")
self.search = Transliterator.createFromRules("icu_search",
norm_rules + trans_rules)
# Intermediate reorder by source. Also compute required character set.
immediate = defaultdict(list)
chars = set()
for variant in replacements:
if variant.source[-1] == ' ' and variant.replacement[-1] == ' ':
replstr = variant.replacement[:-1]
else:
replstr = variant.replacement
immediate[variant.source].append(replstr)
chars.update(variant.source)
# Then copy to datrie
self.replacements = datrie.Trie(''.join(chars))
for src, repllist in immediate.items():
self.replacements[src] = repllist
def get_normalized(self, name):
""" Normalize the given name, i.e. remove all elements not relevant
for search.
"""
return self.normalizer.transliterate(name).strip()
def get_variants_ascii(self, norm_name):
""" Compute the spelling variants for the given normalized name
and transliterate the result.
"""
baseform = '^ ' + norm_name + ' ^'
partials = ['']
startpos = 0
pos = 0
force_space = False
while pos < len(baseform):
full, repl = self.replacements.longest_prefix_item(baseform[pos:],
(None, None))
if full is not None:
done = baseform[startpos:pos]
partials = [v + done + r
for v, r in itertools.product(partials, repl)
if not force_space or r.startswith(' ')]
if len(partials) > 128:
# If too many variants are produced, they are unlikely
# to be helpful. Only use the original term.
startpos = 0
break
startpos = pos + len(full)
if full[-1] == ' ':
startpos -= 1
force_space = True
pos = startpos
else:
pos += 1
force_space = False
# No variants detected? Fast return.
if startpos == 0:
trans_name = self.to_ascii.transliterate(norm_name).strip()
return [trans_name] if trans_name else []
return self._compute_result_set(partials, baseform[startpos:])
def _compute_result_set(self, partials, prefix):
results = set()
for variant in partials:
vname = variant + prefix
trans_name = self.to_ascii.transliterate(vname[1:-1]).strip()
if trans_name:
results.add(trans_name)
return list(results)
def get_search_normalized(self, name):
""" Return the normalized version of the name (including transliteration)
to be applied at search time.
"""
return self.search.transliterate(' ' + name + ' ').strip()