forked from hans/Nominatim
Adds a mandatory section 'analyzer' to the token-analysis entries which define, which analyser to use. Currently there is exactly one, generic, which implements the former ICUNameProcessor.
111 lines
4.0 KiB
Python
111 lines
4.0 KiB
Python
"""
|
|
Generic processor for names that creates abbreviation variants.
|
|
"""
|
|
from collections import defaultdict
|
|
import itertools
|
|
|
|
from icu import Transliterator
|
|
import datrie
|
|
|
|
### Analysis section
|
|
|
|
def create(norm_rules, trans_rules, config):
|
|
""" Create a new token analysis instance for this module.
|
|
"""
|
|
return GenericTokenAnalysis(norm_rules, trans_rules, config['variants'])
|
|
|
|
|
|
class GenericTokenAnalysis:
|
|
""" Collects the different transformation rules for normalisation of names
|
|
and provides the functions to apply the transformations.
|
|
"""
|
|
|
|
def __init__(self, norm_rules, trans_rules, replacements):
|
|
self.normalizer = Transliterator.createFromRules("icu_normalization",
|
|
norm_rules)
|
|
self.to_ascii = Transliterator.createFromRules("icu_to_ascii",
|
|
trans_rules +
|
|
";[:Space:]+ > ' '")
|
|
self.search = Transliterator.createFromRules("icu_search",
|
|
norm_rules + trans_rules)
|
|
|
|
# Intermediate reorder by source. Also compute required character set.
|
|
immediate = defaultdict(list)
|
|
chars = set()
|
|
for variant in replacements:
|
|
if variant.source[-1] == ' ' and variant.replacement[-1] == ' ':
|
|
replstr = variant.replacement[:-1]
|
|
else:
|
|
replstr = variant.replacement
|
|
immediate[variant.source].append(replstr)
|
|
chars.update(variant.source)
|
|
# Then copy to datrie
|
|
self.replacements = datrie.Trie(''.join(chars))
|
|
for src, repllist in immediate.items():
|
|
self.replacements[src] = repllist
|
|
|
|
|
|
def get_normalized(self, name):
|
|
""" Normalize the given name, i.e. remove all elements not relevant
|
|
for search.
|
|
"""
|
|
return self.normalizer.transliterate(name).strip()
|
|
|
|
def get_variants_ascii(self, norm_name):
|
|
""" Compute the spelling variants for the given normalized name
|
|
and transliterate the result.
|
|
"""
|
|
baseform = '^ ' + norm_name + ' ^'
|
|
partials = ['']
|
|
|
|
startpos = 0
|
|
pos = 0
|
|
force_space = False
|
|
while pos < len(baseform):
|
|
full, repl = self.replacements.longest_prefix_item(baseform[pos:],
|
|
(None, None))
|
|
if full is not None:
|
|
done = baseform[startpos:pos]
|
|
partials = [v + done + r
|
|
for v, r in itertools.product(partials, repl)
|
|
if not force_space or r.startswith(' ')]
|
|
if len(partials) > 128:
|
|
# If too many variants are produced, they are unlikely
|
|
# to be helpful. Only use the original term.
|
|
startpos = 0
|
|
break
|
|
startpos = pos + len(full)
|
|
if full[-1] == ' ':
|
|
startpos -= 1
|
|
force_space = True
|
|
pos = startpos
|
|
else:
|
|
pos += 1
|
|
force_space = False
|
|
|
|
# No variants detected? Fast return.
|
|
if startpos == 0:
|
|
trans_name = self.to_ascii.transliterate(norm_name).strip()
|
|
return [trans_name] if trans_name else []
|
|
|
|
return self._compute_result_set(partials, baseform[startpos:])
|
|
|
|
|
|
def _compute_result_set(self, partials, prefix):
|
|
results = set()
|
|
|
|
for variant in partials:
|
|
vname = variant + prefix
|
|
trans_name = self.to_ascii.transliterate(vname[1:-1]).strip()
|
|
if trans_name:
|
|
results.add(trans_name)
|
|
|
|
return list(results)
|
|
|
|
|
|
def get_search_normalized(self, name):
|
|
""" Return the normalized version of the name (including transliteration)
|
|
to be applied at search time.
|
|
"""
|
|
return self.search.transliterate(' ' + name + ' ').strip()
|