2018 TIGER data conversion scripts, add documentation to /docs/data-sources

This commit is contained in:
marc tobias
2018-09-28 20:17:02 +02:00
committed by Sarah Hoffmann
parent 4e2fe6427c
commit aa41b813b8
11 changed files with 99 additions and 88 deletions

View File

@@ -0,0 +1,29 @@
# US TIGER address data
Convert [TIGER](https://www.census.gov/geo/maps-data/data/tiger.html)/Line dataset of the US Census Bureau to SQL files which can be imported by Nominatim. The created tables in the Nominatim database are separate from OpenStreetMap tables and get queried at search time separately.
The dataset gets updated once per year. Downloading is prown to be slow (can take a full day) and converting them can take hours as well.
Replace '2018' with the current year throughout.
1. Install the GDAL library and python bindings and the unzip tool
# Ubuntu:
sudo apt-get install python-gdal unzip
# CentOS:
sudo yum install gdal-python unzip
2. Get the TIGER 2018 data. You will need the EDGES files
(3,233 zip files, 11GB total).
wget -r ftp://ftp2.census.gov/geo/tiger/TIGER2018/EDGES/
3. Convert the data into SQL statements. Adjust the file paths in the scripts as needed
cd data-sources/us-tiger
./convert.sh <input-path> <output-path>
4. Maybe: package the created files
tar -czf tiger2018-nominatim-preprocessed.tar.gz tiger

View File

@@ -0,0 +1,48 @@
#!/bin/bash
INPATH=$1
OUTPATH=$2
if [[ ! -d "$INPATH" ]]; then
echo "input path does not exist"
exit 1
fi
if [[ ! -d "$OUTPATH" ]]; then
echo "output path does not exist"
exit 1
fi
INREGEX='_([0-9]{5})_edges.zip'
WORKPATH="$OUTPATH/tmp-workdir/"
mkdir -p "$WORKPATH"
INFILES=($INPATH/*.zip)
echo "Found ${#INFILES[*]} files."
for F in ${INFILES[*]}; do
# echo $F
if [[ "$F" =~ $INREGEX ]]; then
COUNTYID=${BASH_REMATCH[1]}
SHAPEFILE="$WORKPATH/$(basename $F '.zip').shp"
SQLFILE="$OUTPATH/$COUNTYID.sql"
unzip -o -q -d "$WORKPATH" "$F"
if [[ ! -e "$SHAPEFILE" ]]; then
echo "Unzip failed. $SHAPEFILE not found."
exit 1
fi
./tiger_address_convert.py "$SHAPEFILE" "$SQLFILE"
rm $WORKPATH/*
fi
done
OUTFILES=($OUTPATH/*.sql)
echo "Wrote ${#OUTFILES[*]} files."
rmdir $WORKPATH

View File

@@ -0,0 +1,620 @@
#!/usr/bin/python
# Tiger road data to OSM conversion script
# Creates Karlsruhe-style address ways beside the main way
# based on the Massachusetts GIS script by christopher schmidt
#BUGS:
# On very tight curves, a loop may be generated in the address way.
# It would be nice if the ends of the address ways were not pulled back from dead ends
# Ways that include these mtfccs should not be uploaded
# H1100 Connector
# H3010 Stream/River
# H3013 Braided Stream
# H3020 Canal, Ditch or Aqueduct
# L4130 Point-to-Point Line
# L4140 Property/Parcel Line (Including PLSS)
# P0001 Nonvisible Linear Legal/Statistical Boundary
# P0002 Perennial Shoreline
# P0003 Intermittent Shoreline
# P0004 Other non-visible bounding Edge (e.g., Census water boundary, boundary of an areal feature)
ignoremtfcc = [ "H1100", "H3010", "H3013", "H3020", "L4130", "L4140", "P0001", "P0002", "P0003", "P0004" ]
# Sets the distance that the address ways should be from the main way, in feet.
address_distance = 30
# Sets the distance that the ends of the address ways should be pulled back from the ends of the main way, in feet
address_pullback = 45
import sys, os.path, json
try:
from osgeo import ogr
from osgeo import osr
except:
import ogr
import osr
# https://www.census.gov/geo/reference/codes/cou.html
# tiger_county_fips.json was generated from the following:
# wget https://www2.census.gov/geo/docs/reference/codes/files/national_county.txt
# cat national_county.txt | perl -F, -naE'($F[0] ne 'AS') && $F[3] =~ s/ ((city|City|County|District|Borough|City and Borough|Municipio|Municipality|Parish|Island|Census Area)(?:, |\Z))+//; say qq( "$F[1]$F[2]": "$F[3], $F[0]",)'
json_fh = open(os.path.dirname(sys.argv[0]) + "/tiger_county_fips.json")
county_fips_data = json.load(json_fh)
def parse_shp_for_geom_and_tags( filename ):
#ogr.RegisterAll()
dr = ogr.GetDriverByName("ESRI Shapefile")
poDS = dr.Open( filename )
if poDS == None:
raise "Open failed."
poLayer = poDS.GetLayer( 0 )
fieldNameList = []
layerDefinition = poLayer.GetLayerDefn()
for i in range(layerDefinition.GetFieldCount()):
fieldNameList.append(layerDefinition.GetFieldDefn(i).GetName())
# sys.stderr.write(",".join(fieldNameList))
poLayer.ResetReading()
ret = []
poFeature = poLayer.GetNextFeature()
while poFeature:
tags = {}
# WAY ID
tags["tiger:way_id"] = int( poFeature.GetField("TLID") )
# FEATURE IDENTIFICATION
mtfcc = poFeature.GetField("MTFCC");
if mtfcc != None:
if mtfcc == "L4010": #Pipeline
tags["man_made"] = "pipeline"
if mtfcc == "L4020": #Powerline
tags["power"] = "line"
if mtfcc == "L4031": #Aerial Tramway/Ski Lift
tags["aerialway"] = "cable_car"
if mtfcc == "L4110": #Fence Line
tags["barrier"] = "fence"
if mtfcc == "L4125": #Cliff/Escarpment
tags["natural"] = "cliff"
if mtfcc == "L4165": #Ferry Crossing
tags["route"] = "ferry"
if mtfcc == "R1011": #Railroad Feature (Main, Spur, or Yard)
tags["railway"] = "rail"
ttyp = poFeature.GetField("TTYP")
if ttyp != None:
if ttyp == "S":
tags["service"] = "spur"
if ttyp == "Y":
tags["service"] = "yard"
tags["tiger:ttyp"] = ttyp
if mtfcc == "R1051": #Carline, Streetcar Track, Monorail, Other Mass Transit Rail)
tags["railway"] = "light_rail"
if mtfcc == "R1052": #Cog Rail Line, Incline Rail Line, Tram
tags["railway"] = "incline"
if mtfcc == "S1100":
tags["highway"] = "primary"
if mtfcc == "S1200":
tags["highway"] = "secondary"
if mtfcc == "S1400":
tags["highway"] = "residential"
if mtfcc == "S1500":
tags["highway"] = "track"
if mtfcc == "S1630": #Ramp
tags["highway"] = "motorway_link"
if mtfcc == "S1640": #Service Drive usually along a limited access highway
tags["highway"] = "service"
if mtfcc == "S1710": #Walkway/Pedestrian Trail
tags["highway"] = "path"
if mtfcc == "S1720":
tags["highway"] = "steps"
if mtfcc == "S1730": #Alley
tags["highway"] = "service"
tags["service"] = "alley"
if mtfcc == "S1740": #Private Road for service vehicles (logging, oil, fields, ranches, etc.)
tags["highway"] = "service"
tags["access"] = "private"
if mtfcc == "S1750": #Private Driveway
tags["highway"] = "service"
tags["access"] = "private"
tags["service"] = "driveway"
if mtfcc == "S1780": #Parking Lot Road
tags["highway"] = "service"
tags["service"] = "parking_aisle"
if mtfcc == "S1820": #Bike Path or Trail
tags["highway"] = "cycleway"
if mtfcc == "S1830": #Bridle Path
tags["highway"] = "bridleway"
tags["tiger:mtfcc"] = mtfcc
# FEATURE NAME
if poFeature.GetField("FULLNAME"):
#capitalizes the first letter of each word
name = poFeature.GetField( "FULLNAME" )
tags["name"] = name
#Attempt to guess highway grade
if name[0:2] == "I-":
tags["highway"] = "motorway"
if name[0:3] == "US ":
tags["highway"] = "primary"
if name[0:3] == "US-":
tags["highway"] = "primary"
if name[0:3] == "Hwy":
if tags["highway"] != "primary":
tags["highway"] = "secondary"
# TIGER 2017 no longer contains this field
if 'DIVROAD' in fieldNameList:
divroad = poFeature.GetField("DIVROAD")
if divroad != None:
if divroad == "Y" and "highway" in tags and tags["highway"] == "residential":
tags["highway"] = "tertiary"
tags["tiger:separated"] = divroad
statefp = poFeature.GetField("STATEFP")
countyfp = poFeature.GetField("COUNTYFP")
if (statefp != None) and (countyfp != None):
county_name = county_fips_data.get(statefp + '' + countyfp)
if county_name:
tags["tiger:county"] = county_name.encode("utf-8")
# tlid = poFeature.GetField("TLID")
# if tlid != None:
# tags["tiger:tlid"] = tlid
lfromadd = poFeature.GetField("LFROMADD")
if lfromadd != None:
tags["tiger:lfromadd"] = lfromadd
rfromadd = poFeature.GetField("RFROMADD")
if rfromadd != None:
tags["tiger:rfromadd"] = rfromadd
ltoadd = poFeature.GetField("LTOADD")
if ltoadd != None:
tags["tiger:ltoadd"] = ltoadd
rtoadd = poFeature.GetField("RTOADD")
if rtoadd != None:
tags["tiger:rtoadd"] = rtoadd
zipl = poFeature.GetField("ZIPL")
if zipl != None:
tags["tiger:zip_left"] = zipl
zipr = poFeature.GetField("ZIPR")
if zipr != None:
tags["tiger:zip_right"] = zipr
if mtfcc not in ignoremtfcc:
# COPY DOWN THE GEOMETRY
geom = []
rawgeom = poFeature.GetGeometryRef()
for i in range( rawgeom.GetPointCount() ):
geom.append( (rawgeom.GetX(i), rawgeom.GetY(i)) )
ret.append( (geom, tags) )
poFeature = poLayer.GetNextFeature()
return ret
# ====================================
# to do read .prj file for this data
# Change the Projcs_wkt to match your datas prj file.
# ====================================
projcs_wkt = \
"""GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]"""
from_proj = osr.SpatialReference()
from_proj.ImportFromWkt( projcs_wkt )
# output to WGS84
to_proj = osr.SpatialReference()
to_proj.SetWellKnownGeogCS( "EPSG:4326" )
tr = osr.CoordinateTransformation( from_proj, to_proj )
import math
def length(segment, nodelist):
'''Returns the length (in feet) of a segment'''
first = True
distance = 0
lat_feet = 364613 #The approximate number of feet in one degree of latitude
for point in segment:
pointid, (lat, lon) = nodelist[ round_point( point ) ]
if first:
first = False
else:
#The approximate number of feet in one degree of longitute
lrad = math.radians(lat)
lon_feet = 365527.822 * math.cos(lrad) - 306.75853 * math.cos(3 * lrad) + 0.3937 * math.cos(5 * lrad)
distance += math.sqrt(((lat - previous[0])*lat_feet)**2 + ((lon - previous[1])*lon_feet)**2)
previous = (lat, lon)
return distance
def addressways(waylist, nodelist, first_id):
id = first_id
lat_feet = 364613 #The approximate number of feet in one degree of latitude
distance = float(address_distance)
ret = []
for waykey, segments in waylist.items():
waykey = dict(waykey)
rsegments = []
lsegments = []
for segment in segments:
lsegment = []
rsegment = []
lastpoint = None
# Don't pull back the ends of very short ways too much
seglength = length(segment, nodelist)
if seglength < float(address_pullback) * 3.0:
pullback = seglength / 3.0
else:
pullback = float(address_pullback)
if "tiger:lfromadd" in waykey:
lfromadd = waykey["tiger:lfromadd"]
else:
lfromadd = None
if "tiger:ltoadd" in waykey:
ltoadd = waykey["tiger:ltoadd"]
else:
ltoadd = None
if "tiger:rfromadd" in waykey:
rfromadd = waykey["tiger:rfromadd"]
else:
rfromadd = None
if "tiger:rtoadd" in waykey:
rtoadd = waykey["tiger:rtoadd"]
else:
rtoadd = None
if rfromadd != None and rtoadd != None:
right = True
else:
right = False
if lfromadd != None and ltoadd != None:
left = True
else:
left = False
if left or right:
first = True
firstpointid, firstpoint = nodelist[ round_point( segment[0] ) ]
finalpointid, finalpoint = nodelist[ round_point( segment[len(segment) - 1] ) ]
for point in segment:
pointid, (lat, lon) = nodelist[ round_point( point ) ]
#The approximate number of feet in one degree of longitute
lrad = math.radians(lat)
lon_feet = 365527.822 * math.cos(lrad) - 306.75853 * math.cos(3 * lrad) + 0.3937 * math.cos(5 * lrad)
#Calculate the points of the offset ways
if lastpoint != None:
#Skip points too close to start
if math.sqrt((lat * lat_feet - firstpoint[0] * lat_feet)**2 + (lon * lon_feet - firstpoint[1] * lon_feet)**2) < pullback:
#Preserve very short ways (but will be rendered backwards)
if pointid != finalpointid:
continue
#Skip points too close to end
if math.sqrt((lat * lat_feet - finalpoint[0] * lat_feet)**2 + (lon * lon_feet - finalpoint[1] * lon_feet)**2) < pullback:
#Preserve very short ways (but will be rendered backwards)
if (pointid != firstpointid) and (pointid != finalpointid):
continue
X = (lon - lastpoint[1]) * lon_feet
Y = (lat - lastpoint[0]) * lat_feet
if Y != 0:
theta = math.pi/2 - math.atan( X / Y)
Xp = math.sin(theta) * distance
Yp = math.cos(theta) * distance
else:
Xp = 0
if X > 0:
Yp = -distance
else:
Yp = distance
if Y > 0:
Xp = -Xp
else:
Yp = -Yp
if first:
first = False
dX = - (Yp * (pullback / distance)) / lon_feet #Pull back the first point
dY = (Xp * (pullback / distance)) / lat_feet
if left:
lpoint = (lastpoint[0] + (Yp / lat_feet) - dY, lastpoint[1] + (Xp / lon_feet) - dX)
lsegment.append( (id, lpoint) )
id += 1
if right:
rpoint = (lastpoint[0] - (Yp / lat_feet) - dY, lastpoint[1] - (Xp / lon_feet) - dX)
rsegment.append( (id, rpoint) )
id += 1
else:
#round the curves
if delta[1] != 0:
theta = abs(math.atan(delta[0] / delta[1]))
else:
theta = math.pi / 2
if Xp != 0:
theta = theta - abs(math.atan(Yp / Xp))
else: theta = theta - math.pi / 2
r = 1 + abs(math.tan(theta/2))
if left:
lpoint = (lastpoint[0] + (Yp + delta[0]) * r / (lat_feet * 2), lastpoint[1] + (Xp + delta[1]) * r / (lon_feet * 2))
lsegment.append( (id, lpoint) )
id += 1
if right:
rpoint = (lastpoint[0] - (Yp + delta[0]) * r / (lat_feet * 2), lastpoint[1] - (Xp + delta[1]) * r / (lon_feet * 2))
rsegment.append( (id, rpoint) )
id += 1
delta = (Yp, Xp)
lastpoint = (lat, lon)
#Add in the last node
dX = - (Yp * (pullback / distance)) / lon_feet
dY = (Xp * (pullback / distance)) / lat_feet
if left:
lpoint = (lastpoint[0] + (Yp + delta[0]) / (lat_feet * 2) + dY, lastpoint[1] + (Xp + delta[1]) / (lon_feet * 2) + dX )
lsegment.append( (id, lpoint) )
id += 1
if right:
rpoint = (lastpoint[0] - Yp / lat_feet + dY, lastpoint[1] - Xp / lon_feet + dX)
rsegment.append( (id, rpoint) )
id += 1
#Generate the tags for ways and nodes
zipr = ''
zipl = ''
name = ''
county = ''
if "tiger:zip_right" in waykey:
zipr = waykey["tiger:zip_right"]
if "tiger:zip_left" in waykey:
zipl = waykey["tiger:zip_left"]
if "name" in waykey:
name = waykey["name"]
if "tiger:county" in waykey:
county = waykey["tiger:county"]
if "tiger:separated" in waykey: # No longer set in Tiger-2017
separated = waykey["tiger:separated"]
else:
separated = "N"
#Write the nodes of the offset ways
if right:
rlinestring = [];
for i, point in rsegment:
rlinestring.append( "%f %f" % (point[1], point[0]) )
if left:
llinestring = [];
for i, point in lsegment:
llinestring.append( "%f %f" % (point[1], point[0]) )
if right:
rsegments.append( rsegment )
if left:
lsegments.append( lsegment )
rtofromint = right #Do the addresses convert to integers?
ltofromint = left #Do the addresses convert to integers?
if right:
try: rfromint = int(rfromadd)
except:
print("Non integer address: %s" % rfromadd)
rtofromint = False
try: rtoint = int(rtoadd)
except:
print("Non integer address: %s" % rtoadd)
rtofromint = False
if left:
try: lfromint = int(lfromadd)
except:
print("Non integer address: %s" % lfromadd)
ltofromint = False
try: ltoint = int(ltoadd)
except:
print("Non integer address: %s" % ltoadd)
ltofromint = False
if right:
id += 1
interpolationtype = "all";
if rtofromint:
if (rfromint % 2) == 0 and (rtoint % 2) == 0:
if separated == "Y": #Doesn't matter if there is another side
interpolationtype = "even";
elif ltofromint and (lfromint % 2) == 1 and (ltoint % 2) == 1:
interpolationtype = "even";
elif (rfromint % 2) == 1 and (rtoint % 2) == 1:
if separated == "Y": #Doesn't matter if there is another side
interpolationtype = "odd";
elif ltofromint and (lfromint % 2) == 0 and (ltoint % 2) == 0:
interpolationtype = "odd";
ret.append( "SELECT tiger_line_import(ST_GeomFromText('LINESTRING(%s)',4326), %s, %s, %s, %s, %s, %s);" %
( ",".join(rlinestring), sql_quote(rfromadd), sql_quote(rtoadd), sql_quote(interpolationtype), sql_quote(name), sql_quote(county), sql_quote(zipr) ) )
if left:
id += 1
interpolationtype = "all";
if ltofromint:
if (lfromint % 2) == 0 and (ltoint % 2) == 0:
if separated == "Y":
interpolationtype = "even";
elif rtofromint and (rfromint % 2) == 1 and (rtoint % 2) == 1:
interpolationtype = "even";
elif (lfromint % 2) == 1 and (ltoint % 2) == 1:
if separated == "Y":
interpolationtype = "odd";
elif rtofromint and (rfromint %2 ) == 0 and (rtoint % 2) == 0:
interpolationtype = "odd";
ret.append( "SELECT tiger_line_import(ST_GeomFromText('LINESTRING(%s)',4326), %s, %s, %s, %s, %s, %s);" %
( ",".join(llinestring), sql_quote(lfromadd), sql_quote(ltoadd), sql_quote(interpolationtype), sql_quote(name), sql_quote(county), sql_quote(zipl) ) )
return ret
def sql_quote( string ):
return "'" + string.replace("'", "''") + "'"
def unproject( point ):
pt = tr.TransformPoint( point[0], point[1] )
return (pt[1], pt[0])
def round_point( point, accuracy=8 ):
return tuple( [ round(x,accuracy) for x in point ] )
def compile_nodelist( parsed_gisdata, first_id=1 ):
nodelist = {}
i = first_id
for geom, tags in parsed_gisdata:
if len( geom )==0:
continue
for point in geom:
r_point = round_point( point )
if r_point not in nodelist:
nodelist[ r_point ] = (i, unproject( point ))
i += 1
return (i, nodelist)
def adjacent( left, right ):
left_left = round_point(left[0])
left_right = round_point(left[-1])
right_left = round_point(right[0])
right_right = round_point(right[-1])
return ( left_left == right_left or
left_left == right_right or
left_right == right_left or
left_right == right_right )
def glom( left, right ):
left = list( left )
right = list( right )
left_left = round_point(left[0])
left_right = round_point(left[-1])
right_left = round_point(right[0])
right_right = round_point(right[-1])
if left_left == right_left:
left.reverse()
return left[0:-1] + right
if left_left == right_right:
return right[0:-1] + left
if left_right == right_left:
return left[0:-1] + right
if left_right == right_right:
right.reverse()
return left[0:-1] + right
raise 'segments are not adjacent'
def glom_once( segments ):
if len(segments)==0:
return segments
unsorted = list( segments )
x = unsorted.pop(0)
while len( unsorted ) > 0:
n = len( unsorted )
for i in range(0, n):
y = unsorted[i]
if adjacent( x, y ):
y = unsorted.pop(i)
x = glom( x, y )
break
# Sorted and unsorted lists have no adjacent segments
if len( unsorted ) == n:
break
return x, unsorted
def glom_all( segments ):
unsorted = segments
chunks = []
while unsorted != []:
chunk, unsorted = glom_once( unsorted )
chunks.append( chunk )
return chunks
def compile_waylist( parsed_gisdata ):
waylist = {}
#Group by tiger:way_id
for geom, tags in parsed_gisdata:
way_key = tags.copy()
way_key = ( way_key['tiger:way_id'], tuple( [(k,v) for k,v in way_key.items()] ) )
if way_key not in waylist:
waylist[way_key] = []
waylist[way_key].append( geom )
ret = {}
for (way_id, way_key), segments in waylist.items():
ret[way_key] = glom_all( segments )
return ret
def shape_to_sql( shp_filename, sql_filename ):
print("parsing shpfile %s" % shp_filename)
parsed_features = parse_shp_for_geom_and_tags( shp_filename )
print("compiling nodelist")
i, nodelist = compile_nodelist( parsed_features )
print("compiling waylist")
waylist = compile_waylist( parsed_features )
print("preparing address ways")
sql_lines = addressways(waylist, nodelist, i)
print("writing %s" % sql_filename)
fp = open( sql_filename, "w" )
fp.write( "\n".join( sql_lines ) )
fp.close()
if __name__ == '__main__':
import sys, os.path
if len(sys.argv) < 3:
print("%s input.shp output.sql" % sys.argv[0])
sys.exit()
shp_filename = sys.argv[1]
sql_filename = sys.argv[2]
shape_to_sql(shp_filename, sql_filename)

File diff suppressed because it is too large Load Diff