Files
Nominatim/src/nominatim_api/search/icu_tokenizer.py
Sarah Hoffmann abc911079e remove word_number counting for phrases
We can just examine the break types to know if we are dealing
with a partial token.
2025-02-20 17:36:50 +01:00

356 lines
14 KiB
Python

# SPDX-License-Identifier: GPL-3.0-or-later
#
# This file is part of Nominatim. (https://nominatim.org)
#
# Copyright (C) 2024 by the Nominatim developer community.
# For a full list of authors see the git log.
"""
Implementation of query analysis for the ICU tokenizer.
"""
from typing import Tuple, Dict, List, Optional, Iterator, Any, cast
from collections import defaultdict
import dataclasses
import difflib
import re
from itertools import zip_longest
from icu import Transliterator
import sqlalchemy as sa
from ..errors import UsageError
from ..typing import SaRow
from ..sql.sqlalchemy_types import Json
from ..connection import SearchConnection
from ..logging import log
from . import query as qmod
from ..query_preprocessing.config import QueryConfig
from .query_analyzer_factory import AbstractQueryAnalyzer
DB_TO_TOKEN_TYPE = {
'W': qmod.TokenType.WORD,
'w': qmod.TokenType.PARTIAL,
'H': qmod.TokenType.HOUSENUMBER,
'P': qmod.TokenType.POSTCODE,
'C': qmod.TokenType.COUNTRY
}
PENALTY_IN_TOKEN_BREAK = {
qmod.BreakType.START: 0.5,
qmod.BreakType.END: 0.5,
qmod.BreakType.PHRASE: 0.5,
qmod.BreakType.SOFT_PHRASE: 0.5,
qmod.BreakType.WORD: 0.1,
qmod.BreakType.PART: 0.0,
qmod.BreakType.TOKEN: 0.0
}
@dataclasses.dataclass
class QueryPart:
""" Normalized and transliterated form of a single term in the query.
When the term came out of a split during the transliteration,
the normalized string is the full word before transliteration.
Check the subsequent break type to figure out if the word is
continued.
Penalty is the break penalty for the break following the token.
"""
token: str
normalized: str
penalty: float
QueryParts = List[QueryPart]
WordDict = Dict[str, List[qmod.TokenRange]]
def yield_words(terms: List[QueryPart], start: int) -> Iterator[Tuple[str, qmod.TokenRange]]:
""" Return all combinations of words in the terms list after the
given position.
"""
total = len(terms)
for first in range(start, total):
word = terms[first].token
penalty = PENALTY_IN_TOKEN_BREAK[qmod.BreakType.WORD]
yield word, qmod.TokenRange(first, first + 1, penalty=penalty)
for last in range(first + 1, min(first + 20, total)):
word = ' '.join((word, terms[last].token))
penalty += terms[last - 1].penalty
yield word, qmod.TokenRange(first, last + 1, penalty=penalty)
@dataclasses.dataclass
class ICUToken(qmod.Token):
""" Specialised token for ICU tokenizer.
"""
word_token: str
info: Optional[Dict[str, Any]]
def get_category(self) -> Tuple[str, str]:
assert self.info
return self.info.get('class', ''), self.info.get('type', '')
def rematch(self, norm: str) -> None:
""" Check how well the token matches the given normalized string
and add a penalty, if necessary.
"""
if not self.lookup_word:
return
seq = difflib.SequenceMatcher(a=self.lookup_word, b=norm)
distance = 0
for tag, afrom, ato, bfrom, bto in seq.get_opcodes():
if tag in ('delete', 'insert') and (afrom == 0 or ato == len(self.lookup_word)):
distance += 1
elif tag == 'replace':
distance += max((ato-afrom), (bto-bfrom))
elif tag != 'equal':
distance += abs((ato-afrom) - (bto-bfrom))
self.penalty += (distance/len(self.lookup_word))
@staticmethod
def from_db_row(row: SaRow, base_penalty: float = 0.0) -> 'ICUToken':
""" Create a ICUToken from the row of the word table.
"""
count = 1 if row.info is None else row.info.get('count', 1)
addr_count = 1 if row.info is None else row.info.get('addr_count', 1)
penalty = base_penalty
if row.type == 'w':
penalty += 0.3
elif row.type == 'W':
if len(row.word_token) == 1 and row.word_token == row.word:
penalty += 0.2 if row.word.isdigit() else 0.3
elif row.type == 'H':
penalty += sum(0.1 for c in row.word_token if c != ' ' and not c.isdigit())
if all(not c.isdigit() for c in row.word_token):
penalty += 0.2 * (len(row.word_token) - 1)
elif row.type == 'C':
if len(row.word_token) == 1:
penalty += 0.3
if row.info is None:
lookup_word = row.word
else:
lookup_word = row.info.get('lookup', row.word)
if lookup_word:
lookup_word = lookup_word.split('@', 1)[0]
else:
lookup_word = row.word_token
return ICUToken(penalty=penalty, token=row.word_id, count=max(1, count),
lookup_word=lookup_word,
word_token=row.word_token, info=row.info,
addr_count=max(1, addr_count))
class ICUQueryAnalyzer(AbstractQueryAnalyzer):
""" Converter for query strings into a tokenized query
using the tokens created by a ICU tokenizer.
"""
def __init__(self, conn: SearchConnection) -> None:
self.conn = conn
async def setup(self) -> None:
""" Set up static data structures needed for the analysis.
"""
async def _make_normalizer() -> Any:
rules = await self.conn.get_property('tokenizer_import_normalisation')
return Transliterator.createFromRules("normalization", rules)
self.normalizer = await self.conn.get_cached_value('ICUTOK', 'normalizer',
_make_normalizer)
async def _make_transliterator() -> Any:
rules = await self.conn.get_property('tokenizer_import_transliteration')
return Transliterator.createFromRules("transliteration", rules)
self.transliterator = await self.conn.get_cached_value('ICUTOK', 'transliterator',
_make_transliterator)
await self._setup_preprocessing()
if 'word' not in self.conn.t.meta.tables:
sa.Table('word', self.conn.t.meta,
sa.Column('word_id', sa.Integer),
sa.Column('word_token', sa.Text, nullable=False),
sa.Column('type', sa.Text, nullable=False),
sa.Column('word', sa.Text),
sa.Column('info', Json))
async def _setup_preprocessing(self) -> None:
""" Load the rules for preprocessing and set up the handlers.
"""
rules = self.conn.config.load_sub_configuration('icu_tokenizer.yaml',
config='TOKENIZER_CONFIG')
preprocessing_rules = rules.get('query-preprocessing', [])
self.preprocessors = []
for func in preprocessing_rules:
if 'step' not in func:
raise UsageError("Preprocessing rule is missing the 'step' attribute.")
if not isinstance(func['step'], str):
raise UsageError("'step' attribute must be a simple string.")
module = self.conn.config.load_plugin_module(
func['step'], 'nominatim_api.query_preprocessing')
self.preprocessors.append(
module.create(QueryConfig(func).set_normalizer(self.normalizer)))
async def analyze_query(self, phrases: List[qmod.Phrase]) -> qmod.QueryStruct:
""" Analyze the given list of phrases and return the
tokenized query.
"""
log().section('Analyze query (using ICU tokenizer)')
for func in self.preprocessors:
phrases = func(phrases)
query = qmod.QueryStruct(phrases)
log().var_dump('Normalized query', query.source)
if not query.source:
return query
parts, words = self.split_query(query)
log().var_dump('Transliterated query', lambda: _dump_transliterated(query, parts))
for row in await self.lookup_in_db(list(words.keys())):
for trange in words[row.word_token]:
token = ICUToken.from_db_row(row, trange.penalty or 0.0)
if row.type == 'S':
if row.info['op'] in ('in', 'near'):
if trange.start == 0:
query.add_token(trange, qmod.TokenType.NEAR_ITEM, token)
else:
if trange.start == 0 and trange.end == query.num_token_slots():
query.add_token(trange, qmod.TokenType.NEAR_ITEM, token)
else:
query.add_token(trange, qmod.TokenType.QUALIFIER, token)
else:
query.add_token(trange, DB_TO_TOKEN_TYPE[row.type], token)
self.add_extra_tokens(query, parts)
self.rerank_tokens(query, parts)
log().table_dump('Word tokens', _dump_word_tokens(query))
return query
def normalize_text(self, text: str) -> str:
""" Bring the given text into a normalized form. That is the
standardized form search will work with. All information removed
at this stage is inevitably lost.
"""
return cast(str, self.normalizer.transliterate(text)).strip('-: ')
def split_query(self, query: qmod.QueryStruct) -> Tuple[QueryParts, WordDict]:
""" Transliterate the phrases and split them into tokens.
Returns the list of transliterated tokens together with their
normalized form and a dictionary of words for lookup together
with their position.
"""
parts: QueryParts = []
phrase_start = 0
words = defaultdict(list)
for phrase in query.source:
query.nodes[-1].ptype = phrase.ptype
phrase_split = re.split('([ :-])', phrase.text)
# The zip construct will give us the pairs of word/break from
# the regular expression split. As the split array ends on the
# final word, we simply use the fillvalue to even out the list and
# add the phrase break at the end.
for word, breakchar in zip_longest(*[iter(phrase_split)]*2, fillvalue=','):
if not word:
continue
trans = self.transliterator.transliterate(word)
if trans:
for term in trans.split(' '):
if term:
parts.append(QueryPart(term, word,
PENALTY_IN_TOKEN_BREAK[qmod.BreakType.TOKEN]))
query.add_node(qmod.BreakType.TOKEN, phrase.ptype)
query.nodes[-1].btype = qmod.BreakType(breakchar)
parts[-1].penalty = PENALTY_IN_TOKEN_BREAK[qmod.BreakType(breakchar)]
for word, wrange in yield_words(parts, phrase_start):
words[word].append(wrange)
phrase_start = len(parts)
query.nodes[-1].btype = qmod.BreakType.END
return parts, words
async def lookup_in_db(self, words: List[str]) -> 'sa.Result[Any]':
""" Return the token information from the database for the
given word tokens.
"""
t = self.conn.t.meta.tables['word']
return await self.conn.execute(t.select().where(t.c.word_token.in_(words)))
def add_extra_tokens(self, query: qmod.QueryStruct, parts: QueryParts) -> None:
""" Add tokens to query that are not saved in the database.
"""
for part, node, i in zip(parts, query.nodes, range(1000)):
if len(part.token) <= 4 and part.token.isdigit()\
and not node.has_tokens(i+1, qmod.TokenType.HOUSENUMBER):
query.add_token(qmod.TokenRange(i, i+1), qmod.TokenType.HOUSENUMBER,
ICUToken(penalty=0.5, token=0,
count=1, addr_count=1, lookup_word=part.token,
word_token=part.token, info=None))
def rerank_tokens(self, query: qmod.QueryStruct, parts: QueryParts) -> None:
""" Add penalties to tokens that depend on presence of other token.
"""
for i, node, tlist in query.iter_token_lists():
if tlist.ttype == qmod.TokenType.POSTCODE:
for repl in node.starting:
if repl.end == tlist.end and repl.ttype != qmod.TokenType.POSTCODE \
and (repl.ttype != qmod.TokenType.HOUSENUMBER
or len(tlist.tokens[0].lookup_word) > 4):
repl.add_penalty(0.39)
elif (tlist.ttype == qmod.TokenType.HOUSENUMBER
and len(tlist.tokens[0].lookup_word) <= 3):
if any(c.isdigit() for c in tlist.tokens[0].lookup_word):
for repl in node.starting:
if repl.end == tlist.end and repl.ttype != qmod.TokenType.HOUSENUMBER:
repl.add_penalty(0.5 - tlist.tokens[0].penalty)
elif tlist.ttype not in (qmod.TokenType.COUNTRY, qmod.TokenType.PARTIAL):
norm = parts[i].normalized
for j in range(i + 1, tlist.end):
if node.btype != qmod.BreakType.TOKEN:
norm += ' ' + parts[j].normalized
for token in tlist.tokens:
cast(ICUToken, token).rematch(norm)
def _dump_transliterated(query: qmod.QueryStruct, parts: QueryParts) -> str:
out = query.nodes[0].btype.value
for node, part in zip(query.nodes[1:], parts):
out += part.token + node.btype.value
return out
def _dump_word_tokens(query: qmod.QueryStruct) -> Iterator[List[Any]]:
yield ['type', 'token', 'word_token', 'lookup_word', 'penalty', 'count', 'info']
for node in query.nodes:
for tlist in node.starting:
for token in tlist.tokens:
t = cast(ICUToken, token)
yield [tlist.ttype.name, t.token, t.word_token or '',
t.lookup_word or '', t.penalty, t.count, t.info]
async def create_query_analyzer(conn: SearchConnection) -> AbstractQueryAnalyzer:
""" Create and set up a new query analyzer for a database based
on the ICU tokenizer.
"""
out = ICUQueryAnalyzer(conn)
await out.setup()
return out