Files
Nominatim/src/nominatim_api/search/icu_tokenizer.py
Sarah Hoffmann 81c6cb72e6 add normalised country name to word table
Country tokens now follow the usual convetion of having the
normalized version in the word column and the extra info about the
country code in the info column.
2025-12-01 13:10:18 +01:00

381 lines
16 KiB
Python

# SPDX-License-Identifier: GPL-3.0-or-later
#
# This file is part of Nominatim. (https://nominatim.org)
#
# Copyright (C) 2025 by the Nominatim developer community.
# For a full list of authors see the git log.
"""
Implementation of query analysis for the ICU tokenizer.
"""
from typing import Tuple, Dict, List, Optional, Iterator, Any, cast
import dataclasses
import difflib
import re
from itertools import zip_longest
from icu import Transliterator
import sqlalchemy as sa
from ..errors import UsageError
from ..typing import SaRow
from ..sql.sqlalchemy_types import Json
from ..connection import SearchConnection
from ..logging import log
from . import query as qmod
from ..query_preprocessing.config import QueryConfig
from ..query_preprocessing.base import QueryProcessingFunc
from .query_analyzer_factory import AbstractQueryAnalyzer
from .postcode_parser import PostcodeParser
DB_TO_TOKEN_TYPE = {
'W': qmod.TOKEN_WORD,
'w': qmod.TOKEN_PARTIAL,
'H': qmod.TOKEN_HOUSENUMBER,
'P': qmod.TOKEN_POSTCODE,
'C': qmod.TOKEN_COUNTRY
}
PENALTY_BREAK = {
qmod.BREAK_START: -0.5,
qmod.BREAK_END: -0.5,
qmod.BREAK_PHRASE: -0.5,
qmod.BREAK_SOFT_PHRASE: -0.5,
qmod.BREAK_WORD: 0.1,
qmod.BREAK_PART: 0.2,
qmod.BREAK_TOKEN: 0.4
}
@dataclasses.dataclass
class ICUToken(qmod.Token):
""" Specialised token for ICU tokenizer.
"""
word_token: str
info: Optional[Dict[str, Any]]
def get_category(self) -> Tuple[str, str]:
assert self.info
return self.info.get('class', ''), self.info.get('type', '')
def get_country(self) -> str:
assert self.info
return cast(str, self.info.get('cc', ''))
def match_penalty(self, norm: str) -> float:
""" Check how well the token matches the given normalized string
and add a penalty, if necessary.
"""
if not self.lookup_word:
return 0.0
seq = difflib.SequenceMatcher(a=self.lookup_word, b=norm)
distance = 0
for tag, afrom, ato, bfrom, bto in seq.get_opcodes():
if tag in ('delete', 'insert') and (afrom == 0 or ato == len(self.lookup_word)):
distance += 1
elif tag == 'replace':
distance += max((ato-afrom), (bto-bfrom))
elif tag != 'equal':
distance += abs((ato-afrom) - (bto-bfrom))
return (distance/len(self.lookup_word))
@staticmethod
def from_db_row(row: SaRow) -> 'ICUToken':
""" Create a ICUToken from the row of the word table.
"""
count = 1 if row.info is None else row.info.get('count', 1)
addr_count = 1 if row.info is None else row.info.get('addr_count', 1)
penalty = 0.0
if row.type == 'w':
penalty += 0.3
elif row.type == 'W':
if len(row.word_token) == 1 and row.word_token == row.word:
penalty += 0.2 if row.word.isdigit() else 0.3
elif row.type == 'H':
penalty += sum(0.1 for c in row.word_token if c != ' ' and not c.isdigit())
if all(not c.isdigit() for c in row.word_token):
penalty += 0.2 * (len(row.word_token) - 1)
elif row.type == 'C':
if len(row.word_token) == 1:
penalty += 0.3
if row.info is None:
lookup_word = row.word
else:
lookup_word = row.info.get('lookup', row.word)
if lookup_word:
lookup_word = lookup_word.split('@', 1)[0]
else:
lookup_word = row.word_token
return ICUToken(penalty=penalty, token=row.word_id, count=max(1, count),
lookup_word=lookup_word,
word_token=row.word_token, info=row.info,
addr_count=max(1, addr_count))
@dataclasses.dataclass
class ICUAnalyzerConfig:
postcode_parser: PostcodeParser
normalizer: Transliterator
transliterator: Transliterator
preprocessors: List[QueryProcessingFunc]
@staticmethod
async def create(conn: SearchConnection) -> 'ICUAnalyzerConfig':
rules = await conn.get_property('tokenizer_import_normalisation')
normalizer = Transliterator.createFromRules("normalization", rules)
rules = await conn.get_property('tokenizer_import_transliteration')
transliterator = Transliterator.createFromRules("transliteration", rules)
preprocessing_rules = conn.config.load_sub_configuration('icu_tokenizer.yaml',
config='TOKENIZER_CONFIG')\
.get('query-preprocessing', [])
preprocessors: List[QueryProcessingFunc] = []
for func in preprocessing_rules:
if 'step' not in func:
raise UsageError("Preprocessing rule is missing the 'step' attribute.")
if not isinstance(func['step'], str):
raise UsageError("'step' attribute must be a simple string.")
module = conn.config.load_plugin_module(
func['step'], 'nominatim_api.query_preprocessing')
preprocessors.append(
module.create(QueryConfig(func).set_normalizer(normalizer)))
return ICUAnalyzerConfig(PostcodeParser(conn.config),
normalizer, transliterator, preprocessors)
class ICUQueryAnalyzer(AbstractQueryAnalyzer):
""" Converter for query strings into a tokenized query
using the tokens created by a ICU tokenizer.
"""
def __init__(self, conn: SearchConnection, config: ICUAnalyzerConfig) -> None:
self.conn = conn
self.postcode_parser = config.postcode_parser
self.normalizer = config.normalizer
self.transliterator = config.transliterator
self.preprocessors = config.preprocessors
async def analyze_query(self, phrases: List[qmod.Phrase]) -> qmod.QueryStruct:
""" Analyze the given list of phrases and return the
tokenized query.
"""
log().section('Analyze query (using ICU tokenizer)')
for func in self.preprocessors:
phrases = func(phrases)
query = qmod.QueryStruct(phrases)
log().var_dump('Normalized query', query.source)
if not query.source:
return query
self.split_query(query)
log().var_dump('Transliterated query',
lambda: ''.join(f"{n.term_lookup}{n.btype}" for n in query.nodes)
+ ' / '
+ ''.join(f"{n.term_normalized}{n.btype}" for n in query.nodes))
words = query.extract_words()
for row in await self.lookup_in_db(list(words.keys())):
for trange in words[row.word_token]:
# Create a new token for each position because the token
# penalty can vary depending on the position in the query.
# (See rerank_tokens() below.)
token = ICUToken.from_db_row(row)
if row.type == 'S':
if row.info['op'] in ('in', 'near'):
if trange.start == 0:
query.add_token(trange, qmod.TOKEN_NEAR_ITEM, token)
else:
if trange.start == 0 and trange.end == query.num_token_slots():
query.add_token(trange, qmod.TOKEN_NEAR_ITEM, token)
else:
query.add_token(trange, qmod.TOKEN_QUALIFIER, token)
else:
query.add_token(trange, DB_TO_TOKEN_TYPE[row.type], token)
self.add_extra_tokens(query)
for start, end, pc in self.postcode_parser.parse(query):
term = ' '.join(n.term_lookup for n in query.nodes[start + 1:end + 1])
query.add_token(qmod.TokenRange(start, end),
qmod.TOKEN_POSTCODE,
ICUToken(penalty=0.0, token=0, count=1, addr_count=1,
lookup_word=pc, word_token=term,
info=None))
self.rerank_tokens(query)
self.compute_break_penalties(query)
log().table_dump('Word tokens', _dump_word_tokens(query))
return query
def normalize_text(self, text: str) -> str:
""" Bring the given text into a normalized form. That is the
standardized form search will work with. All information removed
at this stage is inevitably lost.
"""
return cast(str, self.normalizer.transliterate(text)).strip('-: ')
def split_transliteration(self, trans: str, word: str) -> list[tuple[str, str]]:
""" Split the given transliteration string into sub-words and
return them together with the original part of the word.
"""
subwords = trans.split(' ')
if len(subwords) == 1:
return [(trans, word)]
tlist = []
titer = filter(None, subwords)
current_trans: Optional[str] = next(titer)
assert current_trans
current_word = ''
for letter in word:
current_word += letter
if self.transliterator.transliterate(current_word).rstrip() == current_trans:
tlist.append((current_trans, current_word))
current_trans = next(titer, None)
if current_trans is None:
return tlist
current_word = ''
if current_word:
tlist.append((current_trans, current_word))
return tlist
def split_query(self, query: qmod.QueryStruct) -> None:
""" Transliterate the phrases and split them into tokens.
"""
for phrase in query.source:
query.nodes[-1].ptype = phrase.ptype
phrase_split = re.split('([ :-])', phrase.text)
# The zip construct will give us the pairs of word/break from
# the regular expression split. As the split array ends on the
# final word, we simply use the fillvalue to even out the list and
# add the phrase break at the end.
for word, breakchar in zip_longest(*[iter(phrase_split)]*2, fillvalue=','):
if not word:
continue
if trans := self.transliterator.transliterate(word):
for term, term_word in self.split_transliteration(trans, word):
if term:
query.add_node(qmod.BREAK_TOKEN, phrase.ptype, term, term_word)
query.nodes[-1].btype = breakchar
query.nodes[-1].btype = qmod.BREAK_END
async def lookup_in_db(self, words: List[str]) -> 'sa.Result[Any]':
""" Return the token information from the database for the
given word tokens.
This function excludes postcode tokens
"""
t = self.conn.t.meta.tables['word']
return await self.conn.execute(t.select()
.where(t.c.word_token.in_(words))
.where(t.c.type != 'P'))
def add_extra_tokens(self, query: qmod.QueryStruct) -> None:
""" Add tokens to query that are not saved in the database.
"""
need_hnr = False
for i, node in enumerate(query.nodes):
is_full_token = node.btype not in (qmod.BREAK_TOKEN, qmod.BREAK_PART)
if need_hnr and is_full_token \
and len(node.term_normalized) <= 4 and node.term_normalized.isdigit():
query.add_token(qmod.TokenRange(i-1, i), qmod.TOKEN_HOUSENUMBER,
ICUToken(penalty=0.2, token=0,
count=1, addr_count=1,
lookup_word=node.term_lookup,
word_token=node.term_lookup, info=None))
need_hnr = is_full_token and not node.has_tokens(i+1, qmod.TOKEN_HOUSENUMBER)
def rerank_tokens(self, query: qmod.QueryStruct) -> None:
""" Add penalties to tokens that depend on presence of other token.
"""
for start, end, tlist in query.iter_tokens_by_edge():
if len(tlist) > 1:
# If it looks like a Postcode, give preference.
if qmod.TOKEN_POSTCODE in tlist:
for ttype, tokens in tlist.items():
if ttype != qmod.TOKEN_POSTCODE and \
(ttype != qmod.TOKEN_HOUSENUMBER or
start + 1 > end or
len(query.nodes[end].term_lookup) > 4):
for token in tokens:
token.penalty += 0.39
if (start + 1 == end):
if partial := query.nodes[start].partial:
partial.penalty += 0.39
# If it looks like a simple housenumber, prefer that.
if qmod.TOKEN_HOUSENUMBER in tlist:
hnr_lookup = tlist[qmod.TOKEN_HOUSENUMBER][0].lookup_word
if len(hnr_lookup) <= 3 and any(c.isdigit() for c in hnr_lookup):
penalty = 0.5 - tlist[qmod.TOKEN_HOUSENUMBER][0].penalty
for ttype, tokens in tlist.items():
if ttype != qmod.TOKEN_HOUSENUMBER:
for token in tokens:
token.penalty += penalty
if (start + 1 == end):
if partial := query.nodes[start].partial:
partial.penalty += penalty
# rerank tokens against the normalized form
norm = ''.join(f"{n.term_normalized}{'' if n.btype == qmod.BREAK_TOKEN else ' '}"
for n in query.nodes[start + 1:end + 1]).strip()
for ttype, tokens in tlist.items():
for token in tokens:
itok = cast(ICUToken, token)
itok.penalty += itok.match_penalty(norm) * \
(1 if ttype in (qmod.TOKEN_WORD, qmod.TOKEN_PARTIAL) else 2)
def compute_break_penalties(self, query: qmod.QueryStruct) -> None:
""" Set the break penalties for the nodes in the query.
"""
for node in query.nodes:
node.penalty = PENALTY_BREAK[node.btype]
def _dump_word_tokens(query: qmod.QueryStruct) -> Iterator[List[Any]]:
yield ['type', 'from', 'to', 'token', 'word_token', 'lookup_word', 'penalty', 'count', 'info']
for i, node in enumerate(query.nodes):
if node.partial is not None:
t = cast(ICUToken, node.partial)
yield [qmod.TOKEN_PARTIAL, str(i), str(i + 1), t.token,
t.word_token, t.lookup_word, t.penalty, t.count, t.info]
for tlist in node.starting:
for token in tlist.tokens:
t = cast(ICUToken, token)
yield [tlist.ttype, str(i), str(tlist.end), t.token, t.word_token or '',
t.lookup_word or '', t.penalty, t.count, t.info]
async def create_query_analyzer(conn: SearchConnection) -> AbstractQueryAnalyzer:
""" Create and set up a new query analyzer for a database based
on the ICU tokenizer.
"""
async def _get_config() -> ICUAnalyzerConfig:
if 'word' not in conn.t.meta.tables:
sa.Table('word', conn.t.meta,
sa.Column('word_id', sa.Integer),
sa.Column('word_token', sa.Text, nullable=False),
sa.Column('type', sa.Text, nullable=False),
sa.Column('word', sa.Text),
sa.Column('info', Json))
return await ICUAnalyzerConfig.create(conn)
config = await conn.get_cached_value('ICUTOK', 'config', _get_config)
return ICUQueryAnalyzer(conn, config)